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Abstract: 
This paper presents a novel machine reading 

comprehension model based on deep learning techniques in 

Chinese environment. In our manner, the training process can 

be performed using a general-level GPU, and the convergence 

of the training process can be accelerated for a shorter period 

of time. In the architectural design, two main constituting parts 

include Self-Attention Mechanism and Convolutional Neural 

Networks. To enhance the interaction between an article and 

questions, we carry out the operation of Context-Query 

Attention twice, so that our model is more effectively for 

acquiring the information of the questions related to the article 

and converges faster while training. In the experiment, we 

adopt the Delta Reading Comprehension Dataset for model 

evaluation in Chinese environment. The experimental results 

reveal that our model is able to reach the accuracy of 64.9% for 

EM and 79.0% for F1. The convergence time is less than 1 hour 

using the Titan XP GPU, and the memory usage is 

comparatively lower. The training performance is about 3 times 

faster than other models with state-of-the-art architecture. 
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Natural language processing, Chinese machine reading 
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1. Introduction 

In natural language processing (NLP), machine reading 

comprehension (MRC) using deep learning is a hot and 

useful topic nowadays. Although the accuracy of many 

existing MRC models has become higher, the scope of the 

models has also become larger, which requires greater 

computational power via equipping GPUs but need longer 

execution time yet. Unfortunately, the extensibility and 

flexibility of some recent MRC models are decreased as 

unexpected. In addition to this, most MRC models are 

developed for native English speakers, whereas in the world, 

Chinese, also used by billions of people, has less studies on 

their MRC models. 

To overcome the above issues of MRC models, our 

proposed method accomplishes two epoch-making merits. 

One is to use Chinese as the main processing language, and 

another is to moderate the burden of model training and 

memory usage. There are two execution phases of our MRC 

model: the first is language pre-processing, and the second is 

reading comprehension. In the first phase, Chinese articles 

and questions are formatted into computer readable texts. In 

the second phase, we focus on reducing the computational 

cost while doing our best to attain high accuracy. Our 

architectural design is composed of Self-Attention, Context-

to-Query Attention, and Convolutional Neural Networks 

(CNNs). Compared with other models, we emphasize the 

interaction between questions and an article to more 

efficiently find the answer of a question relevant to the article. 

2. Related Work  

In this section, we elaborate three types of architecture 

for MRC, including RNN-based, Attention- based, and 

Recently Huge Architecture. Here, RNN stands for the 

abbreviation of Recurrent Neural Network. 

2.1. RNN-based Reading Comprehension 

There are three RNN-based reading comprehension 

models built upon the SQuAD dataset [1], which comprise 

Match-LSTM [2], Bidirectional Attention Flow for Machine 

Comprehension (BiDAF) [3], and Ruminating Reader [4]. 

Table 1 lists the EM and F1 scores resulting from the three 
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models performing on the SQuAD dataset, which shows that 

the outcome of Ruminating Reader is the best, BiDAF is 

better, and Match-LSTM is the worst. 

TABLE 1. Comparison of the Accuracy of Three Recent RNN-based 

MRC Models on Dataset SQuAD 

Model EM Score F1 Score 

Match-LSTM 64.1% 73.9% 

BiDAF 67.7% 77.3% 

Ruminating Reader 70.6% 79.5% 

2.2. Attention-based Reading Comprehension 

In 2018, Yu et al. released the entire QANet model [5] 

whose architecture is almost the same as that of BiDAF. The 

only difference is that the author defines an encoder block 

consisting of Self-Attention and Convolution layers instead 

of using the RNN to encode their MRC model. Accordingly, 

the QANet saves a lot of convergence time compared to the 

previous methods, and it has a significant improvement in 

the accuracy of reading comprehension. The experimental 

results manifest that in the NVIDIA p100 GPU environment, 

the QANet is 4.3 and 7.0 times faster than the BiDAF in 

training and prediction phases, respectively, and achieves 

high accuracy of EM and F1 scores by 73.6% and 82.7% 

individually on the SQuAD dataset. 

2.3. Recently Popular Huge Architecture 

Both the BERT and QANet serve as two fundamental 

reading comprehension models inspired to develop our MRC 

one. It is noticed that the base BERT already has high 

accuracy, whose EM score is 80.8% and F1 score is 88.5%; 

moreover, for the large BERT, the EM and F1 scores 

respectively arrive at 84.1%, and 90.9% [6]. 

All the above evaluation is carried out on the SQuAD 

dataset. Despite such preferable performance, the BERT 

requires a lot of memory space and computational resources 

to complete a training task. Furthermore, the modification on 

the architecture of BERT is rather difficult. Therefore, we 

aim at moderating computational resources unlike the BERT 

doing. By referring to the architecture of QANet [5], we will 

design a novel MRC model which only needs a low 

computational cost, but still keeps decent accuracy. 

3. Natural Language Processing and Deep Learning 

There are two essential parts in this section. In the first 

part, the pre-processing steps, including tokenization and 

embedding, are introduced; in the second part, the CNN 

architectures and Attention models for deep learning are 

described. 

3.1. Tokenization and Embedding  

Tokenization is a word segmentation method which 

divides continuous sentences or articles into character-based 

or word-based tokens. Because there is no blank space 

between two words in Chinese, word segmentation is a hard 

task in Chinese documents. To surmount this, we use the 

Jieba word segmentation toolkit [7] with the aid of an 

embedding thesaurus dictionary to tokenize words. 

After that, in the embedding step, we convert each token 

into a positive integer index, and use the pre-trained 

embedding dictionary to convert the index into a vector in a 

contiguous space. Hence, we can transform words into 

computer readable vectors. In this task, we adopt the Tencent 

AI Lab Embedding Corpus, which is based on the 

Directional Skip-Gram proposed by Song et al. [8]. Figure 1 

graphically shows the schematic diagram of Chinese 

tokenization and word embedding by virtue of the above 

methods. Consequently, each tokenized word or phrase in the 

given sentence can be changed into a 200-dimensional vector. 

 
(a) 

 
(b) 

FIGURE 1. An example of Chinese tokenization followed by word 

embedding: (a) the tokenization result of a given Chinese sentence using the 
Jieba word segmentation toolkit; (b) the embedding result of (a) using the 
Tencent AI Lab Embedding Corpus. 

3.2. Convolutional Neural Network 

The CNN has strong feature extraction capabilities. 

Herein, we will apply a smart “Convolution” operation to 

text encoding. The input is defined as a 𝑑 × ℎ  matrix, 

where 𝑑  is the dimension of the vector space for word 

embedding and ℎ is the number of words. To alleviate the 

computational time and memory usage in CNNs, the 

Depthwise Separable Convolution (DSC) [9] is exploited in 

our proposed MRC model. 



 

 

• Depthwise separable convolution 

There are two execution steps for DSC: depthwise 

convolution and pointwise convolution. Given a sentence of 

ℎ  words, in the depthwise convolution, each word is 

converted to a 200-dimensional vector in the embedding step, 

and results in a 200 × ℎ matrix. We input this matrix via 

200 channels to do convolution with the corresponding filter. 

In Figure 2, supposing that the filter size is 1 × 𝑛 , 200 

feature maps are then obtained after convolution. 

 

FIGURE 2. The first step of DSC: Depthwise convolution. 

In the pointwise convolution, as illustrated in Figure 3, 

the 200 feature maps is hugely decreased to one by 

performing the convolution of these feature maps with 200 

filters of size 1 × 1. Using this CNN architecture, both the 

amount of memory usage and the time of model training can 

be enormously reduced, which meets the requirement for 

developing our proposed model used in MRC. 

 

FIGURE 3. The second step of DSC: Pointwise convolution. 

3.3. Attention Mechanism 

There are some NLP models based on Attention 

Mechanism, such as QANet [5] and BERT [6]. These models 

have been proven to have faster training speeds and higher 

accuracy than some similar designs, like RNN-based models, 

do. To achieve such preferable performance, our proposed 

MRC model also adopts Attention-based designs, including 

Context-Query Attention and Self-Attention. 

• Context-query attention 

The Context-Query Attention was first used in the 

BiDAF model published by Seo et al. [3]. The main function 

of Context-Query Attention is to interact a given article with 

the information of an input question. This attention 

mechanism consists of two parts called Context-to-Query 

Attention and Query-to-Context Attention, which is 

accomplished by two steps. In the first step, assuming that 

the input article is represented by matrix C with size 𝑑 × 𝑛, 

and the input question is represented by matrix Q with size 

𝑑 × 𝑚, we can get the element of a similarity matrix S with 

size 𝑛 × 𝑚 through the formula as follows: 

 𝑠𝑖𝑗 = 𝑓(𝑐𝑖 , 𝑞𝑗) = 𝑤0
𝑇 ∙ [𝑞𝑗; 𝑐𝑖; 𝑞𝑗⨀𝑐𝑖]  (1) 

where 𝑐𝑖 , 𝑞𝑗 , 𝑤0, ⨀, and “[;]” stand for the 𝑖th word of 

the article, the 𝑗th word of the question, the trainable weight 

vector, the element-wise multiplication, and the operation of 

vectors concatenation across row, respectively. Once each 

element 𝑠𝑖𝑗  is calculated, we can build the similarity matrix 

S. 

Given matrices C, Q, and S, in the second step, we 

acquire the matrix of Context-to-Query Attention 𝐴 and the 

matrix of Query-to-Context Attention 𝐵 by the operations 

depicted below: 

 𝐴 = 𝑆̅ ⋅ 𝑄𝑇 (2) 

 𝐵 = 𝑆̅ ⋅ 𝑆̿𝑇 ⋅ 𝐶𝑇 (3) 

with 𝑆̅ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡ℎ𝑒 𝑟𝑜𝑤𝑠 𝑜𝑓 𝑆) (4) 

and 𝑆̿ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝑆) (5) 

At the end, we set the output of the Context-Query 

Attention to [𝑐; 𝑎; 𝑐⨀𝑎; 𝑐⨀𝑏], where 𝑎 and 𝑏 are a row 

of attention matrices 𝐴 and 𝐵, respectively; 𝑐 is a row of 

article matrix C. By means of the above attention mechanism, 

parts of an input article to interact with input questions can 

be effectively strengthened. Accordingly, our MRC model 

can capture the answers of the questions relevant to the 

article more efficiently. 

• Self-attention 

Self-Attention was first proposed by Vaswani et al. [10]. 

Each word in the Self-Attention processing will refer to other 

words in the same sequence. The final result allows each 

word to comprise the information related to others, which 

possesses similar effects on the output of RNN. 

Before the Self-Attention processing, we must merge 

the original input sequence that contains multiple vectors 

into one matrix, and then multiply this matrix by three 

trainable weight matrices 𝑊𝑄 ,  𝑊𝐾 , and 𝑊𝑉  to get 

matrices 𝑄(𝑞𝑢𝑒𝑟𝑦), 𝐾(𝑘𝑒𝑦), and 𝑉(𝑣𝑎𝑙𝑢𝑒), respectively. 

In the sequel, the input matrix of Self-Attention is expressed 

by the following formula: 

 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑆𝑐𝑜𝑟𝑒

√𝑑𝑘

) ∙ 𝑉 (6) 

with 𝑆𝑐𝑜𝑟𝑒 = 𝑄 ∙ 𝐾𝑇. 



 

 

In the above formula, the multiplication of the matrices 

𝑄 and 𝐾𝑇 yields a matrix 𝑆𝑐𝑜𝑟𝑒, which can be regarded as 

the correlation of each token in the input with all other tokens. 

The elements of 𝑆𝑐𝑜𝑟𝑒 divided by a parameter √𝑑𝑘 are to 

prevent from being too large, where 𝑑𝑘 is the dimension of 

a key. 

To sum up this attention mechanism, most of the current 

MRC models adopt a Multi-head design in which multiple 

sets of 𝑄, 𝐾, and 𝑉 are used. But, to further save execution 

time, we alternatively apply a Single-head design to our 

model encoder. 

4. Our Machine Reading Comprehension Model 

The architecture of our MRC model is graphically 

shown in Figure 4. In this section, we partition the model into 

five parts, namely Input Pre-processing Layer, Input 

Encoding Layer, Interaction Layer, Model Encoding Layer, 

and Output Layer. There are two characteristics of our model. 

First, in the Interaction Layer, twice the Context-Query 

Attention operation is employed to reduce the convergence 

time and achieve higher accuracy; second, in the Model 

Encoding Layer, the Multi-head Self-Attention design is 

replaced with a Single-head design to save memory usage. 

 
FIGURE 4. The architecture of our proposed MRC model. 

4.1. Input Pre-processing Layer 

In this part, we convert the original human language 

into the vector space that can be handled by our MRC model. 

Figure 5 shows the flow chart of pre-processing steps. To 

begin with, the processing of the original text is carried out 

by two kinds of tokenization, which are word-based and 

phrase-based. Herein, the phrase-based tokenization of 

Chinese is performed by the Jieba toolkit [7]. Particularly, an 

embedding thesaurus dictionary servers as an auxiliary tool 

for the Jieba toolkit to attain better match rate of phrases not 

only in the tokenization step but also in the embedding step. 

We then perform the phrase embedding operation using 

Tencent AI Lab Embedding Corpus [8]. On the other hand, 

the word-based tokenization of Chinese is rearranged by a 

CNN. Finally, concatenate the sets of the embedding results 

from word-based vectors and phrase-based vectors into a 

single set. However, the numbers of word-based vectors and 

phrase-based vectors are different from each other. To deal 

with concatenation, we first make the number of word-based 

vectors be the same as that of phrase-based vectors. Usually, 

the former is larger than the latter. To unify their quantities, 

some zero vectors are added to the less. After this processing, 

we can concatenate the two sets of vectors into one set of 

vectors whose dimension is increased, namely 𝑑𝑚𝑜𝑑𝑒𝑙, and 

further sent to a series of two Highway Networks [11] such 

that the gradient explosion and gradient disappearing 

problems can be suppressed during the training process. 

 

FIGURE 5. The flow chart of the pre-processing steps of our MRC model. 

4.2. Input Encoding Layer 

In this subsection, we will encode the output of the 

Input Pre-processing Layer using a model encoder whose 

quantifiable levels are 𝑑𝑚𝑜𝑑𝑒𝑙 . Since the Self-Attention 

operation is unaware of the order of a word sequence, so we 

first have to find the word position that is encoded by the 

following formulas proposed by Vaswani et al. [10]: 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) (7) 

 

(8) and 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) 

Given a word position 𝑝𝑜𝑠 , through these formulas, it 

becomes a position vector whose 𝑛th element is 𝑃𝐸(𝑝𝑜𝑠,𝑛), 

𝑛 = 0,1, … , 𝑑𝑚𝑜𝑑𝑒𝑙 − 1.  After this positional encoding, 

each dimension of the position vector corresponds to a 

sinusoid. The wavelengths grow in terms of a geometric 



 

 

progression, which are ranged from 2π to 10000 ∙ 2π. For 

any fixed offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘  can be presented as a linear 

function of 𝑃𝐸𝑝𝑜𝑠. At last, we add the calculated position 

vector to the original input vector, so that the original input 

can contain the position information. 

Subsequently, perform the encoding process by 

Convolution, Self-Attention, and Feedforward Network. In 

the Convolution phase, the Depthwise Separable 

Convolution [9] is applied, the filter size is 7 and the number 

of filters is 128. The Convolution operation is repeated 4 

times. In the Self-Attention phase, a Single-head design is 

exploited instead of Multi-head design to reduce memory 

consumption. In each Self-Attention operation, we use the 

residual method proposed by He et al. [12] to prevent data 

loss in neural networks comprising a large amount of layers. 

Besides, each phase of the encoding process is first adjusted 

with a layer normalization proposed by Ba et al. in 2016 [13]. 

After the above-mentioned phases, we can respectively 

encode the article and question that are ready to find their 

interaction in the next layer. 

4.3 Interaction Layer 

In this subsection, we will compute the interaction 

between the article and the question, and fuse the information 

of the question to the article. For the design of this layer, we 

refer to the concept of two pass interaction in Ruminating 

Reader developed by Gong and Bowman [4]. At the 

beginning, the Context-Query Attention is employed. The 

article before the processing is denoted as 𝐶, and the output 

of the Attention is denoted as 𝑇. Then merge the article and 

question through the following operation: 

 𝐻 = 𝑓 ∙ 𝐺 + (1 − 𝑓) ∙ 𝐶 (9) 

with 𝐺 = 𝑟𝑒𝑙𝑢(𝑊𝐺𝑇) and  𝑓 = 𝜎(𝑊𝑓𝑇)  

where 𝑊𝐺  and 𝑊𝑓  are the trainable weights in form of 

matrices; both the 𝑟𝑒𝑙𝑢(∙)  and 𝜎(∙)  are two commonly 

used activation functions. The resulting 𝐻 is treated as a 

new article, and the original question is putted to the 

Context-Query Attention again. 

4.4 Model Encoding Layer 

This layer encodes the output of the Interaction Layer. 

There are three blocks connected in series, each of which 

contains 7 model encoders. The model encoder used in this 

subsection is the same as that in the Input Encoding Layer, 

except that the CNN only be repeated twice here. We define 

the respective outputs of the three blocks as matrices 𝑀0, 

𝑀1, and 𝑀2 which will be adopted in the Output Layer. 

4.5. Output Layer 

This layer is the final step of executing our MRC model. 

Its function is to find the location of the answer in the 

encoded article. The way we find the answer is to use the 

boundary method, which means that the model only predicts 

the starting and ending positions of the answer in the article. 

We predict the probabilities of these two positions in the 

article to be 𝑝1  and 𝑝2 , and the calculation is stated as 

follows: 

 𝑝1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊1[𝑀0|𝑀1]) (10) 

 𝑝2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2[𝑀0|𝑀2]) (11) 

where 𝑊1  and 𝑊2  are trainable matrices, and 𝑀0 , 𝑀1 

and 𝑀2 are the corresponding output matrices of the three 

blocks of model encoders in the previous layer. Therefore, 

we can calculate the loss of the training result with the 

function defined below: 

 𝐿(𝜃) = −
1

𝑁
∑ [𝑙𝑜𝑔 (𝑝

𝑦𝑖
1

1 ) + 𝑙𝑜𝑔 (𝑝
𝑦𝑖

2
2 )]

𝑁

𝑖

 (12) 

where 𝑦𝑖
1  and 𝑦𝑖

2  are the ground-truths of starting and 

ending positions of example 𝑖 ; 𝑝
𝑦𝑖

1
1  and 𝑝

𝑦𝑖
2

2  are the 

prediction probabilities of the starting and ending positions 

of example 𝑖, and 𝑁 is the total number of examples. 

5. Experimental Results and Discussion 

In this section, we compare our MRC model with those 

from the leaderboard over the years in various situations. The 

effectiveness of our MRC model is verified in both the 

English and Chinese environment. In the aspect of Chinese 

environment, there is currently no published Chinese MRC 

model. For fair comparison, we will revise our MRC model 

to suitable for English environment. The experimental 

Chinese MRC system based on our proposed model is 

demonstrated in Appendix. 

5.1. Test on Stanford Question Answering Dataset 

Although our MRC model is designed for Chinese 

environment, it is still available under English environment. 

To show that, we choose the English dataset SQuAD v1.1 for 

evaluation. The characteristic of SQuAD v1.1 is that the 

answer must be a contiguous block in the article, whose 

position is also marked in the article. 

To be applicable to the text structure of English articles, 

we replace the Chinese word embedding tools with the pre-

trained dictionary “Glove” [14]. After training, we test our 



 

 

MRC model together with some recent MRC models, and 

compare their resulting EM and F1 scores, as Table 2 lists. 

TABLE 2. Comparison of the Accuracy of Some Recent MRC Models and 

Ours on Dataset SQuAD v1.1  

Model EM Score F1 Score 

Match-LSTM 64.1% 73.9% 
BiDAF 67.7% 77.3% 

Ruminating Reader 70.6% 79.5% 

QANet 73.6% 82.7% 
BERT(base) 80.8% 88.5% 

BERT(large) 84.1% 90.9% 

Ours 70.1% 79.4% 

From these experimental results, we can observe that 

although our MRC model is not designed for performing on 

English datasets, its accuracy is higher than that of some 

other related work. Compared to QANet, our MRC model 

has a significant reduction in the constituting architecture, 

but its accuracy is slightly lower than that of QANet. 

Another achievement accomplished by our MRC model 

is to shorten the convergence time that is required for 

reaching the F1 score higher than 77% on the SQuAD v1.1 

dataset. Table 3 records the comparison of the training 

performance of BiDAF, QANet, and Ours. 

TABLE 3. Comparison of the Training Performance of QANet, BiDAF, 
and Ours on Dataset SQuAD v1.1  

Model GPU Convergence Time Training Speed 

BiDAF TESLA P100 15 hours 37 samples/sec 

QANet TESLA P100 3 hours 259 samples/sec 
Ours Titan XP 3.5 hours 77 samples/sec 

To accelerate the training process, we diminish the 

batch size that results in a relatively small number of samples 

processed per second. Even so, when the accuracy reaches 

the F1 score of 77%, the convergence time required for our 

MRC model is still almost the same as that for QANet, and 

is much less than that for BiDAF. As for the training speed, 

our MRC model is superior to BiDAF, but inferior to QANet. 

5.2. Test on Delta Reading Comprehension Dataset 

In Chinese environment, we propose two other 

architectures which are called Modelsimple  and 

Modelbi .by modifying our original MRC model. In the 

Modelsimple, the Context-Query Attention operation is only 

used once; while, in the Modelbi, we make a bi-directional 

design of the Self-Attention operation, which is similar to the 

architecture of BERT [6]. 

In the following experiment, we employ the cross-

validation method to evaluate the aforementioned MRC 

models on the DRCD dataset [15]. The structure of DRCD is 

the same as that of SQuAD v1.1. The performance 

comparison of Modelsimple , Modelbi , and our original 

MRC model is shown in Table 4. 

TABLE 4. Comparison of the Accuracy of Modelsimple, Modelbi, and 

Ours on Dataset DRCD  

Model EM Score F1 Score 

Modelsimple 61.8% 75.6% 

Modelbi 64.2% 78.3% 

Ours 64.9% 79.0% 

From the above results, it can be seen that our original 

MRC model using Context-Query Attention twice is more 

effective than both the Modelsimple and Modelbi do. Next, 

we compare the training performance in Chinese 

environment. In this experiment, all the three models are 

trained by the aid of NVIDIA Titan XP GPU, and the 

comparison result is listed in Table 5. 

TABLE 5. Comparison of the Training Performance of Modelsimple, 

Modelbi, and Ours on Dataset DRCD  
Model GPU Convergence Time Training Speed 

Modelsimple Titan XP 1 hour 58 minutes 72.3 samples/sec 

Modelbi Titan XP 1 hours 34 minutes 56.7 samples/sec 

Ours Titan XP 43 minutes 80.6 samples/sec 

As the performance shown in this table, our original 

MRC model requires less convergence time as well as has 

more training speed than the other two models do. The 

overall experimental results manifest that the two designs 

originated from modifying our model are not ineffective. The 

convergence time of our model is less than 1 hour under the 

computer equipped with NIVIDIA Titan XP GPU. As a result, 

we reach the goal of moderating memory usage and 

shortening the convergence time as the model is expected. 

6. Conclusions 

In this paper, we present a Chinese MRC model 

achieved by an economical computational cost, which 

possesses two main contributions. First, based on the design 

adopted by BERT, the second Context-Query Attention is 

added to enhance the relation between articles and questions. 

Second, to save memory consumption, we use the Single-

head Self-Attention instead of a Multi-head design in the 

training process. In the experiment, the DRCD dataset is 

chosen to evaluate our model in Chinese environment, which 

arrives at the accuracy of 79.0% for EM and 64.9% for F1. 

Besides this, the convergence time and training speed are 43 

minutes and 80.6 sample/sec, respectively. Compared to the 

simplified model using Context-Query Attention once and 

the redesigned model using bi-directional Self-Attention, our 

original MRC model has higher accuracy, less convergence 

time, and faster training speed, which is useful for the 

environment possessed of limited computational capability. 



 

 

Acknowledgement 

The authors thank the Ministry of Science and 

Technology of Taiwan (R. O. C.) for supporting this work in 

part under Grant MOST 107-2221-E-011-113-MY2. 

Appendix  

In this appendix, we show the screenshots of our 

experimental Chinese MRC system. As seen from Figure 

A.1, the interface of the system contains three regions which 

are the input article, user input question, and system output 

answer. 

  
(a) 

  
(b) 

FIGURE A.1 Two examples of demonstrating our experimental Chinese 

MRC system: (a) Question: Where is the capital of Germany? Answer: 
Berlin; (b) Question: What is the figure of my father? Answer: A fatty. 
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