

 A NOVEL CHINESE READING COMPREHENSION MODEL BASED ON

ATTENTION MECHANISM AND CONVOLUTIONAL NEURAL NETWORKS

CHIN-SHYURNG FAHN, YI-LUN WANG, CHU-PING LEE, AND MENG-LUEN WU

Department of Computer Science and Information Engineering

National Taiwan University of Science and Technology

No. 43, Keelung Road, Section 4, Da'an District, Taipei 106335, Taiwan, Republic of China

E-MAIL: csfahn@mail.ntust.edu.tw, M10615060@mail.ntust.edu.tw, D10215011@mail.ntust.edu.tw,

D10015015@mail.ntust.edu.tw

Abstract:
This paper presents a novel machine reading

comprehension model based on deep learning techniques in

Chinese environment. In our manner, the training process can

be performed using a general-level GPU, and the convergence

of the training process can be accelerated for a shorter period

of time. In the architectural design, two main constituting parts

include Self-Attention Mechanism and Convolutional Neural

Networks. To enhance the interaction between an article and

questions, we carry out the operation of Context-Query

Attention twice, so that our model is more effectively for

acquiring the information of the questions related to the article

and converges faster while training. In the experiment, we

adopt the Delta Reading Comprehension Dataset for model

evaluation in Chinese environment. The experimental results

reveal that our model is able to reach the accuracy of 64.9% for

EM and 79.0% for F1. The convergence time is less than 1 hour

using the Titan XP GPU, and the memory usage is

comparatively lower. The training performance is about 3 times

faster than other models with state-of-the-art architecture.

Keywords:
Natural language processing, Chinese machine reading

comprehension, attention mechanism, convolutional neural

network, deep learning.

1. Introduction

In natural language processing (NLP), machine reading

comprehension (MRC) using deep learning is a hot and

useful topic nowadays. Although the accuracy of many

existing MRC models has become higher, the scope of the

models has also become larger, which requires greater

computational power via equipping GPUs but need longer

execution time yet. Unfortunately, the extensibility and

flexibility of some recent MRC models are decreased as

unexpected. In addition to this, most MRC models are

developed for native English speakers, whereas in the world,

Chinese, also used by billions of people, has less studies on

their MRC models.

To overcome the above issues of MRC models, our

proposed method accomplishes two epoch-making merits.

One is to use Chinese as the main processing language, and

another is to moderate the burden of model training and

memory usage. There are two execution phases of our MRC

model: the first is language pre-processing, and the second is

reading comprehension. In the first phase, Chinese articles

and questions are formatted into computer readable texts. In

the second phase, we focus on reducing the computational

cost while doing our best to attain high accuracy. Our

architectural design is composed of Self-Attention, Context-

to-Query Attention, and Convolutional Neural Networks

(CNNs). Compared with other models, we emphasize the

interaction between questions and an article to more

efficiently find the answer of a question relevant to the article.

2. Related Work

In this section, we elaborate three types of architecture

for MRC, including RNN-based, Attention- based, and

Recently Huge Architecture. Here, RNN stands for the

abbreviation of Recurrent Neural Network.

2.1. RNN-based Reading Comprehension

There are three RNN-based reading comprehension

models built upon the SQuAD dataset [1], which comprise

Match-LSTM [2], Bidirectional Attention Flow for Machine

Comprehension (BiDAF) [3], and Ruminating Reader [4].

Table 1 lists the EM and F1 scores resulting from the three

mailto:M10615060@mail.ntust.edu.tw

models performing on the SQuAD dataset, which shows that

the outcome of Ruminating Reader is the best, BiDAF is

better, and Match-LSTM is the worst.

TABLE 1. Comparison of the Accuracy of Three Recent RNN-based

MRC Models on Dataset SQuAD

Model EM Score F1 Score

Match-LSTM 64.1% 73.9%

BiDAF 67.7% 77.3%

Ruminating Reader 70.6% 79.5%

2.2. Attention-based Reading Comprehension

In 2018, Yu et al. released the entire QANet model [5]

whose architecture is almost the same as that of BiDAF. The

only difference is that the author defines an encoder block

consisting of Self-Attention and Convolution layers instead

of using the RNN to encode their MRC model. Accordingly,

the QANet saves a lot of convergence time compared to the

previous methods, and it has a significant improvement in

the accuracy of reading comprehension. The experimental

results manifest that in the NVIDIA p100 GPU environment,

the QANet is 4.3 and 7.0 times faster than the BiDAF in

training and prediction phases, respectively, and achieves

high accuracy of EM and F1 scores by 73.6% and 82.7%

individually on the SQuAD dataset.

2.3. Recently Popular Huge Architecture

Both the BERT and QANet serve as two fundamental

reading comprehension models inspired to develop our MRC

one. It is noticed that the base BERT already has high

accuracy, whose EM score is 80.8% and F1 score is 88.5%;

moreover, for the large BERT, the EM and F1 scores

respectively arrive at 84.1%, and 90.9% [6].

All the above evaluation is carried out on the SQuAD

dataset. Despite such preferable performance, the BERT

requires a lot of memory space and computational resources

to complete a training task. Furthermore, the modification on

the architecture of BERT is rather difficult. Therefore, we

aim at moderating computational resources unlike the BERT

doing. By referring to the architecture of QANet [5], we will

design a novel MRC model which only needs a low

computational cost, but still keeps decent accuracy.

3. Natural Language Processing and Deep Learning

There are two essential parts in this section. In the first

part, the pre-processing steps, including tokenization and

embedding, are introduced; in the second part, the CNN

architectures and Attention models for deep learning are

described.

3.1. Tokenization and Embedding

Tokenization is a word segmentation method which

divides continuous sentences or articles into character-based

or word-based tokens. Because there is no blank space

between two words in Chinese, word segmentation is a hard

task in Chinese documents. To surmount this, we use the

Jieba word segmentation toolkit [7] with the aid of an

embedding thesaurus dictionary to tokenize words.

After that, in the embedding step, we convert each token

into a positive integer index, and use the pre-trained

embedding dictionary to convert the index into a vector in a

contiguous space. Hence, we can transform words into

computer readable vectors. In this task, we adopt the Tencent

AI Lab Embedding Corpus, which is based on the

Directional Skip-Gram proposed by Song et al. [8]. Figure 1

graphically shows the schematic diagram of Chinese

tokenization and word embedding by virtue of the above

methods. Consequently, each tokenized word or phrase in the

given sentence can be changed into a 200-dimensional vector.

(a)

(b)

FIGURE 1. An example of Chinese tokenization followed by word

embedding: (a) the tokenization result of a given Chinese sentence using the
Jieba word segmentation toolkit; (b) the embedding result of (a) using the
Tencent AI Lab Embedding Corpus.

3.2. Convolutional Neural Network

The CNN has strong feature extraction capabilities.

Herein, we will apply a smart “Convolution” operation to

text encoding. The input is defined as a 𝑑 × ℎ matrix,

where 𝑑 is the dimension of the vector space for word

embedding and ℎ is the number of words. To alleviate the

computational time and memory usage in CNNs, the

Depthwise Separable Convolution (DSC) [9] is exploited in

our proposed MRC model.

• Depthwise separable convolution

There are two execution steps for DSC: depthwise

convolution and pointwise convolution. Given a sentence of

ℎ words, in the depthwise convolution, each word is

converted to a 200-dimensional vector in the embedding step,

and results in a 200 × ℎ matrix. We input this matrix via

200 channels to do convolution with the corresponding filter.

In Figure 2, supposing that the filter size is 1 × 𝑛 , 200

feature maps are then obtained after convolution.

FIGURE 2. The first step of DSC: Depthwise convolution.

In the pointwise convolution, as illustrated in Figure 3,

the 200 feature maps is hugely decreased to one by

performing the convolution of these feature maps with 200

filters of size 1 × 1. Using this CNN architecture, both the

amount of memory usage and the time of model training can

be enormously reduced, which meets the requirement for

developing our proposed model used in MRC.

FIGURE 3. The second step of DSC: Pointwise convolution.

3.3. Attention Mechanism

There are some NLP models based on Attention

Mechanism, such as QANet [5] and BERT [6]. These models

have been proven to have faster training speeds and higher

accuracy than some similar designs, like RNN-based models,

do. To achieve such preferable performance, our proposed

MRC model also adopts Attention-based designs, including

Context-Query Attention and Self-Attention.

• Context-query attention

The Context-Query Attention was first used in the

BiDAF model published by Seo et al. [3]. The main function

of Context-Query Attention is to interact a given article with

the information of an input question. This attention

mechanism consists of two parts called Context-to-Query

Attention and Query-to-Context Attention, which is

accomplished by two steps. In the first step, assuming that

the input article is represented by matrix C with size 𝑑 × 𝑛,

and the input question is represented by matrix Q with size

𝑑 × 𝑚, we can get the element of a similarity matrix S with

size 𝑛 × 𝑚 through the formula as follows:

 𝑠𝑖𝑗 = 𝑓(𝑐𝑖 , 𝑞𝑗) = 𝑤0
𝑇 ∙ [𝑞𝑗; 𝑐𝑖; 𝑞𝑗⨀𝑐𝑖] (1)

where 𝑐𝑖 , 𝑞𝑗 , 𝑤0, ⨀, and “[;]” stand for the 𝑖th word of

the article, the 𝑗th word of the question, the trainable weight

vector, the element-wise multiplication, and the operation of

vectors concatenation across row, respectively. Once each

element 𝑠𝑖𝑗 is calculated, we can build the similarity matrix

S.

Given matrices C, Q, and S, in the second step, we

acquire the matrix of Context-to-Query Attention 𝐴 and the

matrix of Query-to-Context Attention 𝐵 by the operations

depicted below:

 𝐴 = 𝑆̅ ⋅ 𝑄𝑇 (2)

 𝐵 = 𝑆̅ ⋅ 𝑆̿𝑇 ⋅ 𝐶𝑇 (3)

with 𝑆̅ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡ℎ𝑒 𝑟𝑜𝑤𝑠 𝑜𝑓 𝑆) (4)

and 𝑆̿ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑡ℎ𝑒 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓 𝑆) (5)

At the end, we set the output of the Context-Query

Attention to [𝑐; 𝑎; 𝑐⨀𝑎; 𝑐⨀𝑏], where 𝑎 and 𝑏 are a row

of attention matrices 𝐴 and 𝐵, respectively; 𝑐 is a row of

article matrix C. By means of the above attention mechanism,

parts of an input article to interact with input questions can

be effectively strengthened. Accordingly, our MRC model

can capture the answers of the questions relevant to the

article more efficiently.

• Self-attention

Self-Attention was first proposed by Vaswani et al. [10].

Each word in the Self-Attention processing will refer to other

words in the same sequence. The final result allows each

word to comprise the information related to others, which

possesses similar effects on the output of RNN.

Before the Self-Attention processing, we must merge

the original input sequence that contains multiple vectors

into one matrix, and then multiply this matrix by three

trainable weight matrices 𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 to get

matrices 𝑄(𝑞𝑢𝑒𝑟𝑦), 𝐾(𝑘𝑒𝑦), and 𝑉(𝑣𝑎𝑙𝑢𝑒), respectively.

In the sequel, the input matrix of Self-Attention is expressed

by the following formula:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑆𝑐𝑜𝑟𝑒

√𝑑𝑘

) ∙ 𝑉 (6)

with 𝑆𝑐𝑜𝑟𝑒 = 𝑄 ∙ 𝐾𝑇.

In the above formula, the multiplication of the matrices

𝑄 and 𝐾𝑇 yields a matrix 𝑆𝑐𝑜𝑟𝑒, which can be regarded as

the correlation of each token in the input with all other tokens.

The elements of 𝑆𝑐𝑜𝑟𝑒 divided by a parameter √𝑑𝑘 are to

prevent from being too large, where 𝑑𝑘 is the dimension of

a key.

To sum up this attention mechanism, most of the current

MRC models adopt a Multi-head design in which multiple

sets of 𝑄, 𝐾, and 𝑉 are used. But, to further save execution

time, we alternatively apply a Single-head design to our

model encoder.

4. Our Machine Reading Comprehension Model

The architecture of our MRC model is graphically

shown in Figure 4. In this section, we partition the model into

five parts, namely Input Pre-processing Layer, Input

Encoding Layer, Interaction Layer, Model Encoding Layer,

and Output Layer. There are two characteristics of our model.

First, in the Interaction Layer, twice the Context-Query

Attention operation is employed to reduce the convergence

time and achieve higher accuracy; second, in the Model

Encoding Layer, the Multi-head Self-Attention design is

replaced with a Single-head design to save memory usage.

FIGURE 4. The architecture of our proposed MRC model.

4.1. Input Pre-processing Layer

In this part, we convert the original human language

into the vector space that can be handled by our MRC model.

Figure 5 shows the flow chart of pre-processing steps. To

begin with, the processing of the original text is carried out

by two kinds of tokenization, which are word-based and

phrase-based. Herein, the phrase-based tokenization of

Chinese is performed by the Jieba toolkit [7]. Particularly, an

embedding thesaurus dictionary servers as an auxiliary tool

for the Jieba toolkit to attain better match rate of phrases not

only in the tokenization step but also in the embedding step.

We then perform the phrase embedding operation using

Tencent AI Lab Embedding Corpus [8]. On the other hand,

the word-based tokenization of Chinese is rearranged by a

CNN. Finally, concatenate the sets of the embedding results

from word-based vectors and phrase-based vectors into a

single set. However, the numbers of word-based vectors and

phrase-based vectors are different from each other. To deal

with concatenation, we first make the number of word-based

vectors be the same as that of phrase-based vectors. Usually,

the former is larger than the latter. To unify their quantities,

some zero vectors are added to the less. After this processing,

we can concatenate the two sets of vectors into one set of

vectors whose dimension is increased, namely 𝑑𝑚𝑜𝑑𝑒𝑙, and

further sent to a series of two Highway Networks [11] such

that the gradient explosion and gradient disappearing

problems can be suppressed during the training process.

FIGURE 5. The flow chart of the pre-processing steps of our MRC model.

4.2. Input Encoding Layer

In this subsection, we will encode the output of the

Input Pre-processing Layer using a model encoder whose

quantifiable levels are 𝑑𝑚𝑜𝑑𝑒𝑙 . Since the Self-Attention

operation is unaware of the order of a word sequence, so we

first have to find the word position that is encoded by the

following formulas proposed by Vaswani et al. [10]:

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) (7)

(8) and 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

Given a word position 𝑝𝑜𝑠 , through these formulas, it

becomes a position vector whose 𝑛th element is 𝑃𝐸(𝑝𝑜𝑠,𝑛),

𝑛 = 0,1, … , 𝑑𝑚𝑜𝑑𝑒𝑙 − 1. After this positional encoding,

each dimension of the position vector corresponds to a

sinusoid. The wavelengths grow in terms of a geometric

progression, which are ranged from 2π to 10000 ∙ 2π. For

any fixed offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be presented as a linear

function of 𝑃𝐸𝑝𝑜𝑠. At last, we add the calculated position

vector to the original input vector, so that the original input

can contain the position information.

Subsequently, perform the encoding process by

Convolution, Self-Attention, and Feedforward Network. In

the Convolution phase, the Depthwise Separable

Convolution [9] is applied, the filter size is 7 and the number

of filters is 128. The Convolution operation is repeated 4

times. In the Self-Attention phase, a Single-head design is

exploited instead of Multi-head design to reduce memory

consumption. In each Self-Attention operation, we use the

residual method proposed by He et al. [12] to prevent data

loss in neural networks comprising a large amount of layers.

Besides, each phase of the encoding process is first adjusted

with a layer normalization proposed by Ba et al. in 2016 [13].

After the above-mentioned phases, we can respectively

encode the article and question that are ready to find their

interaction in the next layer.

4.3 Interaction Layer

In this subsection, we will compute the interaction

between the article and the question, and fuse the information

of the question to the article. For the design of this layer, we

refer to the concept of two pass interaction in Ruminating

Reader developed by Gong and Bowman [4]. At the

beginning, the Context-Query Attention is employed. The

article before the processing is denoted as 𝐶, and the output

of the Attention is denoted as 𝑇. Then merge the article and

question through the following operation:

 𝐻 = 𝑓 ∙ 𝐺 + (1 − 𝑓) ∙ 𝐶 (9)

with 𝐺 = 𝑟𝑒𝑙𝑢(𝑊𝐺𝑇) and 𝑓 = 𝜎(𝑊𝑓𝑇)

where 𝑊𝐺 and 𝑊𝑓 are the trainable weights in form of

matrices; both the 𝑟𝑒𝑙𝑢(∙) and 𝜎(∙) are two commonly

used activation functions. The resulting 𝐻 is treated as a

new article, and the original question is putted to the

Context-Query Attention again.

4.4 Model Encoding Layer

This layer encodes the output of the Interaction Layer.

There are three blocks connected in series, each of which

contains 7 model encoders. The model encoder used in this

subsection is the same as that in the Input Encoding Layer,

except that the CNN only be repeated twice here. We define

the respective outputs of the three blocks as matrices 𝑀0,

𝑀1, and 𝑀2 which will be adopted in the Output Layer.

4.5. Output Layer

This layer is the final step of executing our MRC model.

Its function is to find the location of the answer in the

encoded article. The way we find the answer is to use the

boundary method, which means that the model only predicts

the starting and ending positions of the answer in the article.

We predict the probabilities of these two positions in the

article to be 𝑝1 and 𝑝2 , and the calculation is stated as

follows:

 𝑝1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊1[𝑀0|𝑀1]) (10)

 𝑝2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2[𝑀0|𝑀2]) (11)

where 𝑊1 and 𝑊2 are trainable matrices, and 𝑀0 , 𝑀1

and 𝑀2 are the corresponding output matrices of the three

blocks of model encoders in the previous layer. Therefore,

we can calculate the loss of the training result with the

function defined below:

 𝐿(𝜃) = −
1

𝑁
∑ [𝑙𝑜𝑔 (𝑝

𝑦𝑖
1

1) + 𝑙𝑜𝑔 (𝑝
𝑦𝑖

2
2)]

𝑁

𝑖

 (12)

where 𝑦𝑖
1 and 𝑦𝑖

2 are the ground-truths of starting and

ending positions of example 𝑖 ; 𝑝
𝑦𝑖

1
1 and 𝑝

𝑦𝑖
2

2 are the

prediction probabilities of the starting and ending positions

of example 𝑖, and 𝑁 is the total number of examples.

5. Experimental Results and Discussion

In this section, we compare our MRC model with those

from the leaderboard over the years in various situations. The

effectiveness of our MRC model is verified in both the

English and Chinese environment. In the aspect of Chinese

environment, there is currently no published Chinese MRC

model. For fair comparison, we will revise our MRC model

to suitable for English environment. The experimental

Chinese MRC system based on our proposed model is

demonstrated in Appendix.

5.1. Test on Stanford Question Answering Dataset

Although our MRC model is designed for Chinese

environment, it is still available under English environment.

To show that, we choose the English dataset SQuAD v1.1 for

evaluation. The characteristic of SQuAD v1.1 is that the

answer must be a contiguous block in the article, whose

position is also marked in the article.

To be applicable to the text structure of English articles,

we replace the Chinese word embedding tools with the pre-

trained dictionary “Glove” [14]. After training, we test our

MRC model together with some recent MRC models, and

compare their resulting EM and F1 scores, as Table 2 lists.

TABLE 2. Comparison of the Accuracy of Some Recent MRC Models and

Ours on Dataset SQuAD v1.1

Model EM Score F1 Score

Match-LSTM 64.1% 73.9%
BiDAF 67.7% 77.3%

Ruminating Reader 70.6% 79.5%

QANet 73.6% 82.7%
BERT(base) 80.8% 88.5%

BERT(large) 84.1% 90.9%

Ours 70.1% 79.4%

From these experimental results, we can observe that

although our MRC model is not designed for performing on

English datasets, its accuracy is higher than that of some

other related work. Compared to QANet, our MRC model

has a significant reduction in the constituting architecture,

but its accuracy is slightly lower than that of QANet.

Another achievement accomplished by our MRC model

is to shorten the convergence time that is required for

reaching the F1 score higher than 77% on the SQuAD v1.1

dataset. Table 3 records the comparison of the training

performance of BiDAF, QANet, and Ours.

TABLE 3. Comparison of the Training Performance of QANet, BiDAF,
and Ours on Dataset SQuAD v1.1

Model GPU Convergence Time Training Speed

BiDAF TESLA P100 15 hours 37 samples/sec

QANet TESLA P100 3 hours 259 samples/sec
Ours Titan XP 3.5 hours 77 samples/sec

To accelerate the training process, we diminish the

batch size that results in a relatively small number of samples

processed per second. Even so, when the accuracy reaches

the F1 score of 77%, the convergence time required for our

MRC model is still almost the same as that for QANet, and

is much less than that for BiDAF. As for the training speed,

our MRC model is superior to BiDAF, but inferior to QANet.

5.2. Test on Delta Reading Comprehension Dataset

In Chinese environment, we propose two other

architectures which are called Modelsimple and

Modelbi .by modifying our original MRC model. In the

Modelsimple, the Context-Query Attention operation is only

used once; while, in the Modelbi, we make a bi-directional

design of the Self-Attention operation, which is similar to the

architecture of BERT [6].

In the following experiment, we employ the cross-

validation method to evaluate the aforementioned MRC

models on the DRCD dataset [15]. The structure of DRCD is

the same as that of SQuAD v1.1. The performance

comparison of Modelsimple , Modelbi , and our original

MRC model is shown in Table 4.

TABLE 4. Comparison of the Accuracy of Modelsimple, Modelbi, and

Ours on Dataset DRCD

Model EM Score F1 Score

Modelsimple 61.8% 75.6%

Modelbi 64.2% 78.3%

Ours 64.9% 79.0%

From the above results, it can be seen that our original

MRC model using Context-Query Attention twice is more

effective than both the Modelsimple and Modelbi do. Next,

we compare the training performance in Chinese

environment. In this experiment, all the three models are

trained by the aid of NVIDIA Titan XP GPU, and the

comparison result is listed in Table 5.

TABLE 5. Comparison of the Training Performance of Modelsimple,

Modelbi, and Ours on Dataset DRCD
Model GPU Convergence Time Training Speed

Modelsimple Titan XP 1 hour 58 minutes 72.3 samples/sec

Modelbi Titan XP 1 hours 34 minutes 56.7 samples/sec

Ours Titan XP 43 minutes 80.6 samples/sec

As the performance shown in this table, our original

MRC model requires less convergence time as well as has

more training speed than the other two models do. The

overall experimental results manifest that the two designs

originated from modifying our model are not ineffective. The

convergence time of our model is less than 1 hour under the

computer equipped with NIVIDIA Titan XP GPU. As a result,

we reach the goal of moderating memory usage and

shortening the convergence time as the model is expected.

6. Conclusions

In this paper, we present a Chinese MRC model

achieved by an economical computational cost, which

possesses two main contributions. First, based on the design

adopted by BERT, the second Context-Query Attention is

added to enhance the relation between articles and questions.

Second, to save memory consumption, we use the Single-

head Self-Attention instead of a Multi-head design in the

training process. In the experiment, the DRCD dataset is

chosen to evaluate our model in Chinese environment, which

arrives at the accuracy of 79.0% for EM and 64.9% for F1.

Besides this, the convergence time and training speed are 43

minutes and 80.6 sample/sec, respectively. Compared to the

simplified model using Context-Query Attention once and

the redesigned model using bi-directional Self-Attention, our

original MRC model has higher accuracy, less convergence

time, and faster training speed, which is useful for the

environment possessed of limited computational capability.

Acknowledgement

The authors thank the Ministry of Science and

Technology of Taiwan (R. O. C.) for supporting this work in

part under Grant MOST 107-2221-E-011-113-MY2.

Appendix

In this appendix, we show the screenshots of our

experimental Chinese MRC system. As seen from Figure

A.1, the interface of the system contains three regions which

are the input article, user input question, and system output

answer.

(a)

(b)

FIGURE A.1 Two examples of demonstrating our experimental Chinese

MRC system: (a) Question: Where is the capital of Germany? Answer:
Berlin; (b) Question: What is the figure of my father? Answer: A fatty.

References

[1] P. Rajpurkar et al., “SQuAD: 100,000+ questions for

machine comprehension of text,” arXiv:1606.05250

[cs.CL], Oct. 2016.

[2] S. Wang and J. Jiang, “Machine comprehension using

Match-LSTM and answer pointer,” arXiv:1608.07905

[cs.CL], Nov. 2016.

[3] M. Seo et al., “Bidirectional attention flow for machine

comprehension,” arXiv:1611.01603 [cs.CL], Jun. 2018.

[4] Y. Gong and S. R. Bowman. “Ruminating reader:

Reasoning with gated multi-hop attention,”

arXiv:1704.07415 [cs.CL], Apr. 2017.

[5] A. W. Yu et al., “QANet: Combining local convolution

with global self-attention for reading comprehension,”

arXiv:1804.09541 [cs.CL], Apr. 2018.

[6] J. Devlin et al., “BERT: Pre-training of deep

bidirectional transformers for language understanding,”

arXiv:1810.04805 [cs.CL], May 2019.

[7] J. Sun, Jieba Chinese Word Segmentation Tool, Jun.

2012. Accessed on: Feb. 4, 2020. [Online]

[8] Y. Song et al., “Directional skip-gram: Explicitly

distinguishing left and right context for word

embeddings,” in Proceedings of the International

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, pp. 175-180, New Orleans,

Louisiana, Jun. 2018.

[9] F. Chollet, “Xception: Deep learning with depthwise

separable convolutions,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, pp. 1800-1807, Honolulu, Hawaii, Jul.

2017.

[10] A. Vaswani et al., “Attention is all you need,” in

Proceedings of the Annual Conference on Neural

Information Processing Systems, pp. 5998-6008, Long

Beach, California, Dec. 2017.

[11] J. G. Zilly et al., “Recurrent highway networks,” in

Proceedings of the International Conference on

Machine Learning, pp. 4189-4198, Sydney, Australia,

Jul. 2017.

[12] K. He et al., “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770-

778, Las Vegas, Nevada, Jun. 2016.

[13] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer

normalization,” arXiv:1607.06450 [stat.ML], Jul. 2016.

[14] J. Pennington, R. Socher, and C. D. Manning. “Glove:

Global vectors for word representation,” in

Proceedings of the International Conference on

Empirical Methods in Natural Language Processing,

pp. 1532-1543, Doha, Qatar, Oct. 2014.

[15] C. C. Shao et al., “DRCD: A Chinese machine reading

comprehension dataset,” arXiv:1806.00920 [cs,CL],

May 2019.

